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OPTIMAL CONTROL OF THE HEL BEAM
BY
J. Eldon Steelman
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| ABSTRACT
Optimal control of the deformable mirror in a High Energy Laser was

used to reduce the effects of atmospheric turbulence. The performance
characteristics of an optical detector with one or four sub-apertures were
estimated. These estimated performance characteristics were then used to
determine the regime where four sub-apertures gave better performance
than one sub-aperture for no time delay and for a one millisecond time
delay.
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I. INTRODUCTION:

Optimal control of the deformable mirror in a High Energy

Laser (HEL) (see Figure 1) is used to offset the turbulence in the
atmosphere. This research effort seeks the best control system for the
HEL as a function of the measurement statistics and the number of detector
sub-apertures. The number of sub-apertures is important because more
sub-apertures allow the estimation of higher order optical effects and

the potential for better controi. However, increasing the number of
sub-aperture increases the measurement variance.

The primary tool used in this determination was computer modeling.
Kleinman's routines (References 1 through 5) were used to determine the
optimal continuous control and the steady-state gain of a continuous
Kalman estimator. Kleinman's routines were also used to find the overall

system covariance matrix.

IT1. OBJECTIVES OF THE RESEARCH EFFORT:

The objective of this project was to determine the system

for the deformable mirror which minimized the effects of atmospheric
turbulence. The reduction in atmospheric turbulence effects was found

as a function of measurement statistics and number of sub-apertures.

The reduction was found for the first five optical modes with time delays
of 0 and 1 msec. A basic assumption was that each optical mode could be

estimated separately and linearly.

ITI. ATMOSPHERIC TURBULENCE:

The distortion induced in the laser beam by atmospheric turbulence

can be described in terms of its effect on the various optical modes (tilt,
focus, astigmatism, etc.). The effect on each optical mode can be modeled
by a three state variable model driven by a Gaussian random variable

(References 6 and 7).
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Let Xy =V, = random effect on optical mode

Xy x = turbulence model state
X4 = turbulence model state
Then the state model is
X =-ax tax, (1)
kz = - b X, +b Xy (2) E
k3 = R A (3)
where v, is white noise with covariance
E {vt (v) Ve (t+T)} =k6 (T (4)

Values of k, a, b, and ¢ for the first five optical modes are given in
Table I (Reference 7).

Table I. Parameters for Turbulence Model

Mode Name k a b c
X Tilt 2.6 x 1077 47.10 2200 2200
v Tip 2.6 x 1077 47.10 2200 2200
x> +y%> -R%/2  Focus  3.3x10°%  94.20 3350 3350
xt - y2 Astig-1 5.6 x 1078 41.80 2576 2576
xy (exact)  Astig-2 6.0 x 10710 4.710 73.30 2932
xy (approx.) 5.65 x 10 € 73.30 2932 3 x 104

NOTE: Mode xy (exact) has a zero at .0523 radians/sec

The steady-state output covariance of the system described by equations
(1) through (4) may be found by solving the linear variance equation
(reference 9)

AX+ATX+Q=0 (5)
vwhere

A is the 3 by 3 system matrix from equations 1 through 3

Q is a 3 by 3 matrix with 933 = k
the only non-zero term

X is the covariance matrix of [x1 Xy x3]T
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The resultant entries of x are

X = x.. = x.. = ab{a+b+c)k (6)
1 12 21 2(a+b)(atc)(btc)c

X, = Xy, = ab k (N
13 31 2(bc)(a*c)c

Xno = Xon = Xon = b k (8)
22 23 32 21b+c) c

%33 = o ‘ )

2c
To avoid a special program for mode xy (astigmatism-2), mode xy was
modelled by the approximate model shown as the last line of Table 1. This
approximate model resulted from two approximations. First, the zero
at .0523 was cancelled by the pole at 4.71. (This cancellation multiplied
k by 4.71/.0523). Secondly, the linear variance equation for the resulting

2 pole system was solved to yield
NS 1 S (10)
11 7 2(a+b)b

Finally, an effective k was chosen so that the variance of x

X

1 from (6) and
the variance from (10) were identical when a remote third pnle (c=10b)
was included.

The effect of atmospheric turbulence upon the intensity at the target
is a function of Zernike residual errors (reference 11 and 13). These

residual errors and differences are tabulated in Table 1I.

Table I1. Zernike Residual Errors and Strengths

Mode A.(=0.2%) Difference
103 (Strength of aberration)

Tilt .448
0.582

Tip .448
0.134

Focus .023
0.111

Astig-1 .023
0.088

Astig-2 .023

.065

NOTE: All quantities must be multiplied by (I)/ro)sl3




The normalized, on-axis for field irradiance, Irel’ is usually found
from the Strehl approximation

. L1 = €xpP (-02)
The Strehl approximation is not valid for large values of 02. Thus, the
figure of merit used in this research effort is the normalized phase
variance 02/002 where 002 = 1.03 (D/ro)5/3. For example, if tilt
and tip could be completely corrected (or removed) the normalized

variance would be 0.134/1.03.




IV. MIRROR AND CONTROL SYSTEM MODEL:
The mirror tilt and control system are represented by three state

variables.
Let x, = mirror tilt (11)
Xg = mirror tilt rate (12)
X = integral of error (xl - xh) (13)
Finally, the mirror drive is a force driver such that
k& = X = u (18)

The complete tilt system model is

rfl- r-a a 0 0 0 0 {XI’ r.0. |.0-
X, 0 -b b 0 0 X, 0 0
. - -
f3 = 0 0 c 0 0 Xq + 0f u+ N (15)
X, 0 0 0 1 X, 0
®
fS 0 0 0 0 x5
L X, L 1 0 -1 0 0L x, - Lo L0 o

The covariance matrix for the driving noise is all zeros except for
33 k (16)
The remaining four optical modes will be modeled by the same general
equation. The different values from Table I will be used in equations (15)
and (16).

V. SYSTEM OBSERVATION MATRIX:
The observation system will be represented by y =M x + v .

The quantity ¥q is measured by the detector.

Vi S X ot ox, t vy a7)
Observability requires that X also be measured

V3 = X t v, (18)
The programs developed for the research (reference 14) also permitted
the measurement of X,

Y =X, t vy (19)

However, a knowledge of X, did not improve the system performance
and the coefficients associated with this measurement were later set

to zero.




VI. OPTIMAL CONTROL SYSTEM DESIGN:

The classical infinite time optimal control problem minimizes a

cost function (Reference 8).

vV = /“(xt le + b Rlu) dt (20)
The minimization of V ;;oduces the control in terms of Pl’ the solution
to a Ricatti equation

PA+A® - bR IBE P +Q =0 (21)
(Kleinman's subroutine MRIC solves this equation.)
The optimal control is

we= - Rt P, (22)
The optimal control can be required to have a prescribed stability by
replacing A by (aU + A).

VII. KALMAN STATE ESTIMATOR:
If the basic plant is described by (reference 8)

X = Ax + Bu + vy (23)
y = Mx + v, (24)
The Kalman estimator is
x,= Ax +Bu+tk (Mx -y (25)
Desired control law
u = Lx (26)
Actual control law
u = Lx e (27)
Defining
e = x - X, (28)
yields a new system with doubled dimension
X1 (A+BL -Bly rx v,
= + (29)
e 0 A+k M e +k v
= e -X e -m




The matrix ke is the Kalman gain. It is given by
_ t . -1
ke = - P MRy (30)
where k _is the covariance of v_.
m -m

P, (the covariance of e) is the solution to (Reference 8)

t t -1 -
P2 A + A P2 P2 M Rm M P2 + Qn = 0 (31)

Qn is the covariance of Ve
R is the covariance of v_.
m -m

The input covariance for equation (29) is

v = Epv v t vt v t k t
cov 7% -X -X X -m e
v +k v v +k v
X e —m -X e -m
Thus,
cov [yx ] =[Qn % t] =, (32)
Ve * ke LM Qn Qn * ke Rm ke

The (2,2) term can be further simplified by substituting equatioa (30).

t _ t -1 -1\t
ke Ry ko= BIC R R ROV H P
=P, R M) P,
Thus, the (2,2) term becomes
t t -1
Qn + ke Rm ke = Qn + P2 M Rm M) P2 (33)

The steady-state output covariance for the double dimension system
described by equation (29) is the solution of the linear variance equation
Apy Py ¥ Py Als ¥ Q=0 L (34)
where P, is the covariance of [x~ e’]
A12 is the double dimension system matrix
Q, is the input covariance from (32)
Kleinman (reference 10) modified the system described above by
including the effects of time delay in the observation system.
y(® =Mx(t-T+y_(t-T) (35)
Given this observation model Kleinman obtains the following expression

for the covariance of Xx.
t
t T - At
AT , AT At p yEg7l dt
Pp= e Ppe * /oe MR T

- t <t
' At AT. .t -1 AT At
‘ + € e PZM R mMe e dt (36)

where A = A + BL (term from (29))
(Kleinman's routine INTEG performs numerical integrations of this type).




VIIT DETECTOR MODELS:

Martin (reference 11) presents this result for the variance of an upgraded

shearing interferometer measurement

2 _ o2 M2 2 2 + 2
Ts17 7 M C% et (“do‘Fov) [l (O‘_d)]

@ a
sinZ [T a_ /1 +70.\ \1/2 (37)
[0 ()
%Fov %
where Cppr = 4.17 x 10
M2 = number of sub-apertures
= 4 x 10_6 radians
- -5
UFOV =2x10 " M
a is shown in Table III.
Substituting values into equation (37) produces
g2 = M f (38)
SI

sin?[g/M]
With f and g from Table 111 equation (38) yields the results also shown in
Table III.

Table III. Values and Results for Detector Calculations

Small Medium Large
Target Target Target
VALUES
o, (SR) 10712 107" T
a, (radians) 1.13 x 107° 3.57 x 1070 1.13 x 107
£ 2.42 x 1077 3.11 x 1078 6.96 x 1077
g .653 .842 1.88
Results (osi-radians x 10°8)
M=1 39.8 4.17 0.731
M=2 301. 30.5 3.45
M= 2 1549 155. 16.2

In all cases the aperture was modeled as a circular device. However,
the four sub-aperture case (M = 2) and the 12 sub-aperture case (M = a2)
assumed that the circular aperture was subdivided into square sub-apertures.

The results from Table III were used directly for A} in the single

aperture case.




Now each detector can measure only tilt (mode x) and tip (mode y).
.Thus, higher order modes must be estimated from tilt and tip measurements

made at the various sub-apertures. Furth:s, if all the sub-aperture

© ey

measurements have the same noise behavior, then a least square estimate

is also a minimum variance estimate. This linear estimation procedure
was derived by seeking the sub-aperture measurements in terms of the

first five modes (reference 12). The following measurement model was used.

m=HaH+ \_/'m (39)
where
ftilt (1)]
tile(2) foverall tilt]
m = |tilt(3) and a = loverall tip
tilt(4) focus
tip(1) astig-1
tip(2) astig-2
£ip(3) - )
Ltip(ﬂv) J
v, = sub-aperture noise vector
m = measurements at each sub-aperture
a = optical modes into the aperture

The expressions for Hi i are
b

H . = __1__; dzj dA, 1<i<4 (40)
i,]j Ay Aidx
ad oy - ——i—ﬂ azj dA, 4<i<8 (41)
»J 11,93
where Zj = mode j as a function of x and y. For a circle divided into
four 90° segments, the H matrix is
1 0 2k k K]
1 0 -2k -k k
1 0 -2k -k -k
H = 1 0 2k k -k (42)
0 1 2k -k k
0 1 2k -k -k
0 1 -2k k -k
_p 1 -2k k k]

where k = 8/3n

10

ey




Finally, the least square estimates are obtained from the sub-aperture

measurements of tip and tilt by
a_ = wlya (43)

The covariance of the least square estimates is (for four identical

detectors)
s = 0? (1)} (44)
Thus, the variances for the estimations are
0% (tilt) = 0,%/4 (45)
02 (tip) = oi2/4 (46)
0?2 (focus) = 0i2/32k2) 47)
0% (astig-1) = 012/(8k2) (48)
02 (astig-2) = oiz/(8k2) (49)

where 012 = variance of tilt and tip for each detector. The resulting

sigmas for each mode and the various target sizes are shown in Table IV.

Table IV. Sigma (x 10 8) in Radians

Small Medium Large

Target Target Target
o(tilt) 151 15.2 1.73
o(tip) 151 15.2 1.73
o(focus) 62.8 6.34 .718
o(astig~1) 126. 12.7 1.44
o(astig-2) 126. 12.7 1.44

IX. RESULTS AND CONCLUSIONS:
Optimal Control Results

The Q1 and Rl matrices of equation 20 and alpha of equation 22
were selected to produce a closed loop system with a damped natural
frequency of about 500 Hz and a damping ratio of about 0.707. The
values used and the resulting three controllable eigenvalues are shown
in Table V.

11




Table V. Values and Results for Optimal Control

Tilt (& Tip) Focus Astig-1 Astig-2+
Q,(1,1) .145x1010 .2x109 .145%1019 .13x1010
Q,(5,5) 121 95.5 121 119
Q,(6,6) .139x1017 .89x1016 .139x1017 .135x1010
Rl’l .125x108 .6x108 .125x108 .143x108
Alpha 45 90 40 21.1
Real Eigenvalue -4383 -7825 -4367 -4460
Complex -2215 -2220 -2215 -2222
Eigenvalues +j2218 +j2220 +j2218 +j2218

NOTE: Q,(4,4) = Q,(1,1) = -Q,(1,4), -Q,(4,1)
Eigenvalues in per second

*For approximate 3 pole model

Kalman Filter Results
The steady-state Kalman filter was used to estimate the states of
the turbulence model. As discussed in Section V observability requires

that state X (the integral of x. - XA) be measured. So, in lieu of

attempting to establish one sigm; for Xe o the sigma for Xg was varied.
The computer programs presented in reference 14 were modified slightly
to solve the expression of equation (36) and to calculate a variance
reduction ratio for each set of input data.

The results of this research are shown in the graphs of Figures
2 through 7. The graphs of Figures 2 thorugh 4 present the results for
one and four sub-apertures and for the three different target sizes
with no time delay. The graphs of Figures 5 through 7 present the same
results for a time delay of one millisecond.

These graphs reveal that if the variance of the integral of the
error is small enough, then four sub-apertures provide a smaller normalized
phase variance than does a single aperture.

Optical Detector Assumptions
1. Cppp = 4.17 x 1074
2. A quarter circle can be modeled by a square with the same area.

(assumed for the four sub-aperture case)

12




Control System Assumptions
The mirror dynamics permit a damped natural frequency of 500 Hz
with a damping factor of 0.707.
The modes are not coupled.
The time delay can be modeled by
y(t) =M x (t-T) + vm(t-T)

(35)
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